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ABSTRACT 

Inverse modeling involves repeated evaluations 
of the forward simulation, which can be 
computationally prohibitive for large numerical 
models. To reduce the overall computational 
burden of these simulations, we study the use of 
reduced order models (ROMs) as numerical 
surrogates. These ROMs usually involve using 
solutions at different sample points within the 
parameter space to construct an approximate 
solution at any point within the parameter space.  
 
This paper examines a black-box relational 
approach based on Gaussian process regression.   
We demonstrate how an approximate error 
bound of the predicted solution can be 
constructed from the estimated variance of the 
approximation. We show that these ROMs 
perform better than look-up tables, particularly 
when the number of sample points is small. In 
particular, we show how these sample points can 
be chosen optimally to minimize computational 
efforts. Finally, we incorporate these ROMs 
within the inverse modeling framework of 
iTOUGH2 and demonstrate how ROMs can be 
used within that framework. 

INTRODUCTION 

The need to accurately simulate the multiscale 
dynamic behavior of multiphysics systems and 
inclusion of a variety of data has led to 
increasingly large and complex models in areas 
of geological CO2 sequestration, nuclear waste 
disposal, environmental remediation, as well as 
the recovery of conventional (geothermal, oil, 
gas) and unconventional (hydrates, tight gas) 
energy resources. These simulations of 
nonisothermal flows of multicomponent, 
multiphase fluids in three-dimensional porous 
and fractured media may involve the iterative 
simultaneous solution of millions of coupled 

partial differential equations (PDEs) at each time 
step. While high-fidelity simulations are 
essential for understanding coupled processes, 
they may be computationally very expensive. As 
a result, it is impractical to use these models as 
the basis for conducting analyses that require 
many simulation runs (such as inverse modeling, 
parametric study of state variables, uncertainty 
analysis, and optimal design). High-fidelity 
models are needed to capture the physics of the 
problem with the required accuracy. The 
development of defensible reduced-order models 
for inversions and uncertainty quantification 
may offer a solution, but requires a careful 
evaluation of errors which we will use to inform 
our analysis. 

Due to the complexity of subsurface simulation, 
most existing ROMs attempt to approximate the 
relationship between the parameters and outputs 
of interest using a response surface approach. In 
particular, lookup tables in combination with 
linear or higher-order polynomial interpolation 
are commonly used. However, polynomial 
interpolation is generally inaccurate (except for 
very smooth response surfaces) and not robust in 
the presence of uncertainties when the problem 
of interest is stochastic in nature.   
 
In this paper, we consider the use of Gaussian 
process (GP) regression (Rasmussen and 
William, 2006) for ROM construction. It is a 
generalization of the kriging technique 
commonly used in geostatistics.  We will briefly 
describe the GP regression model and how we 
can adaptively construct a ROM that minimizes 
the number of simulations needed to evaluate the 
outputs. We will then demonstrate its 
performance in several test problems, comparing 
it to an adaptive look-up table approach. We will 
finally describe an example in which this GP-
based ROM is used within the iTOUGH2 
framework.   
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METHODOLOGY 

Gaussian Process Regression 

Let us first give an abstract formulation for the 
response surface problem. Given a scalar 
function f(p), where p={p1, …, pn} is a 
parameter vector of length n, we would like to 
approximate f(p) by g(p) using only known 
solutions of f(p p) for p in a sample set SN={q1, 
…, qN} of size N.  
 
A Gaussian process regression first assumes the 
relation between p and f(p) can be described by 
a Gaussian process characterized by its mean 
function, m(p), and covariance function, k(p, p’) 
(Rasmussen and William, 2006): 

 m(p) = E[ f (p)]  (1) 

 k(p,p ') = E[( f (p)!m(p))( f (p ')!m(p '))]  (2) 
 

Knowing f(q) where q!SN, the joint distribution 
of the f(q) and g(p) based on the above prior is 
then  
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where K(q,p) is the covariance matrix.  The joint 
posterior distribution of g(p) is then given by  
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In other words, for any given p, the GP 
regression procedure gives the expected value 
and variance of the approximating function g(p):  
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The accuracy of the results then crucially 
depends on the priors for the mean and 
covariance functions over the entire parameter 
space. In this paper, we consider a constant 
mean function (m(p) = c0)  and examine two 
different covariance functions. 
 
The first covariance function we use is an 
isometric squared exponential (isoSE) function 
given by 

K(p,p’) = !f exp(-(|p-p’|/l)2/2) + !n"p,p’  (7). 

The hyperparameters !f represent the variance at 
the point, l is the characteristic length, and !n 
represents the variance of the noise. This 
function depends on parameter distance |p-p’| 
only, and is thus stationary. As a result, this 
covariance function is appropriate if f(p) varies 
smoothly in p. Without the noise variance !n, 
the covariance function is equivalent to an 
infinite linear combination of Gaussian radial 
basis functions. The resulting GP regression is 
then equivalent to a radial basis function 
interpolation. Note, however, that the GP 
regression is capable of modeling noise within 
the current formalism.   
 
The second covariance function we considered 
is a neural network (NN) covariance function 
(Williams, 1998) given by 

k(p, p ') = ! f sin
"1 2pp '/ l2

(1+ 2pp / l2 )(1+ 2 #p #p / l2 )

$
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'

(
) +           

"n#p,p’                                                                                                    (8) 

This is an inhomogeneous covariance that 
allows abrupt change in f(p) that depends on the 
sign of p. There are other covariance functions 
that one can use; a sample list can be found in 
Rasmussen and William (2006). The two 
covariance functions we have used here are, 
however, sufficient to illustrate the importance 
of choosing the appropriate priors.   
 
In the above definitions, c0, !f, and !n are known 
as the hyperparameters. To determine these 
hyperparameters, we will solve an optimization 
problem that maximizes the marginal Gaussian 
likelihood function, which is equivalent to 
minimizing the following negative log marginal 
likelihood (Rasmussen and William, 2006) 
 
-log(P(f|p)) = (1/2)(fTKf +log(|K|) +nlog(2$))  (9) 
 
For this work, we built our ROM based in part 
on Gaussian Process Regression and 
Classification (GPML) Toolbox version 3.1, but 
added additional functionalities, such as the 
adaptive sampling procedure. The optimization 
procedure used is based on the conjugate 
gradient method. Finally, we implemented the 
algorithms mentioned in this paper within 
iTOUGH2, allowing us to use the resulting 
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reduced-order model for uncertainty 
quantification. 

Sampling procedure 
Eq. (5) shows that results will largely depend on 
the samples selected. The question remains, how 
can we select parameters in SN? One may use 
statistical approaches, such as the Latin 
Hypercube sampling procedure, to determine SN, 
but we will still need to determine the number of 
samples needed. Here, we examine an adaptive 
approach known as the “greedy algorithm,” or 
(in the context of neural networks) the forward 
selection algorithm. The greedy algorithm has 
been proposed in Carr et al. (2001) for radial 
basis functions and in many other references 
(e.g., Rozza, 2007) for other ROM approaches.  
 
In the greedy algorithm, we first construct a 
large search sample set SS that sufficiently 
represents the entire parameter space. Starting 
with a randomly selected parameter point p1 !SS
we compute f(p1) and construct our first ROM, 
g1(p) based on S1={p1}. We then determine 
p2
* = argmaxp!SSe1(p)where e1 is an appropriate 

error measure of g(p) -f(p). Then, we append 
p2* to S1 to form S2. We repeat the procedure to 
construct ROM g2(p), …, gn(p) until either emax= 
en(pn+1*) is below a predetermined error 
tolerance, or the number of sample points in SS 
reaches the maximum allowable number.  
 
In this work, we use ! (from Eq. 6) as our error 
measure en. Thus, we do not need to evaluate 
f(p), !p "SS . If our final ROM consists of N 
sample points, we only perform N full 
simulations. We will examine how this affects 
the distribution of points in SN. We may use 
other error measures, but the choice will affect 
the accuracy and efficiency of the ROM. For 
example, one may choose to use the actual 
absolute error. Although this may lead to a more 
accurate model, it requires f(p) to be 
predetermined for !p "SS . We intend to 
examine other error measures that may lead to 
more accurate and efficient ROM in the future.  
 
The above construction procedure also leads to a 
series of hierarchical ROMs that are increasingly 
more accurate. At each iteration n, we build a 
ROM that perform optimally given Sn and f(p), 

p !Sn . For a GP regression model, we thus 
optimize the hyperparameters in every iteration. 
We then have at our disposal a series of ROMs 
that we can use, depending on the accuracy and 
efficiency needed in our application.   

RESULTS 

Sample problem 
This test problem is based on the iTOUGH2 
sample problem 6 (Finsterle, 2007), in which the 
forward model describes a ventilation 
experiment conducted at the Grimsel Rock 
Laboratory, Switzerland. The purpose of this 
particular test is to quantify the extent of the 
two-phase region and to study its hydraulic 
properties. In situ measurements of water 
potential, water content, temperature, and 
ambient air humidity were performed. Details of 
the forward model can be found in Finsterle and 
Pruess (1995). 
 
The three uncertain parameters considered in the 
inverse problem are the logarithm of the 
absolute permeability, log(k), and the van 
Genuchten parameters n and log(1/ ). For our 
purpose, we select capillary pressure at one 
point location only as the model output of 
interest, f(p). 
  
The ranges of log(k), n and log(1/%) that we 
have considered are [-19,-14], [2,3] and [5,6]. 
Figure 1 shows how f(p) varies with log(k) and n 
for selected values of log(1/%). There is clearly a 
sudden change between log(k) = -16 and -14 but 
for log(k) between [-19,-16], f(p) appears 
reasonably smooth. 

 
Figure 1. Model output f(p) as a function of three 

input parameters for the sample problem. 
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We first consider two cases in which log(k) 
stays within a smaller range, [-19,-16],  and a 
larger range, [-19,-14]. Ranges for n and 
log(1/%) are the same for both cases as given 
earlier. In a second analysis, we will use the 
constructed ROM to do an uncertainty 
quantification analysis in iTOUGH2. Note that 
we normalize the parameters such that they vary 
between 0 and 1. We set N to be 30.  The search 
sample set, SS, which we use for our greedy 
algorithm is 22 points in each direction.  

Sample space 
We first examine how the parameter points 
selected from the adaptive procedure are 
distributed in the sample space. With the isoSE 
covariance function, the distribution of sample 
points for the two cases is shown in Figure 2.  
Since the adaptive algorithm attempts to 
minimize the variance of the approximation (Eq. 
6), which mostly depends on the distance 
between two points (Eq. 7), the selected samples 
are distributed almost but not exactly uniformly 
across the domain, independent of the behavior 
of f(p).   
 
Based on the above observation, we constructed 
a ROM based on a uniform distribution of 27 
points in the parameter space (each direction is 
uniformly divided into two intervals). The 
resulting maximum, mean and standard 
deviation of the errors are 0.056, 0.019 and 
0.013. If we set N=27 and allow the adaptive 
algorithm to determine the points, these 
quantities are 0.062, 0.021 and 0.015. The 
slightly poorer performance is probably due to 
the initial poor approximation resulting from the 
small number of parameter points used to 
construct the ROM, leading to poor initial 
selection of the points.  
 
Note that the apparent poorer performance of the 
adaptive algorithm should be put into context. 
With just 3 additional points, we are able to 
reach the same performance as uniform grid, as 
indicated by Table 1. This is obtained without 
the insights that we concluded from the previous 
paragraph. Indeed, the adaptive algorithm will 
work with any error measure for which insights 
on the optimal layout of sample points are not 
readily available or obvious. Finally, it is not 
necessary to start the adaptive algorithm with 1 

parameter point. We can then easily start the 
adaptive algorithm with a larger Sn that 
incorporates these insights. 

Approximation 
To quantify the actual error, we use the relative 
error of the approximation: 

erel (p) =
| f (p)! g(p) |
| f (p) |                                      (10)

 

for p within a test sample set (we use the search 
sample set, SS), and determine maximum, mean 
and standard deviation of  erel(p). To evaluate 
erel(p), we thus need to evaluate f(p) for all p in 
SS. 
 
 
 

 

 
Figure 2. Distribution of sample points for smaller 

log(k) range (top) and longer log(k) range 
(bottom). 

Table 1 shows the results for two ranges using 
the isoSE covariance function and the results for 
the larger range of log(k) using NN. Table 2 
shows the results for two ranges using linear 
interpolation. 
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Table 1. Maximum, mean and standard deviation of 
approximation errors of GP regression with N=30. 

Range,  
covariance 
function 

erel(p) 
maximum mean Standard  

deviation 
[-19,-16], 
isoSE 

0.057 0.017 0.012 

[-19,-14], 
isoSE 

1.60 0.31 0.26 

[-19,-14], 
NN 

2.40 0.26 0.32 

 
Since f(p) is a smooth function for the smaller 
range of log(k), Table 1 shows that the isoSE 
covariance function was able to approximate f(p) 
accurately. The maximum relative error is only 
5.7%, and the mean error is 1.7% with only 30 
samples. Compared to a linear interpolation 
procedure, the performance is significantly 
better for the same number of points. 
 
 
Table 2. Maximum, mean and standard deviation of 
approximation errors of linear interpolation, N= 30. 

Range 
 

erel(p) 
maximum mean Standard  

deviation 
[-19,-16]  0.096 0.017 0.018 
[-19,-14] 4.42 0.28 0.43 
 
For the larger range of [-19,-14], the accuracy of 
the approximation deteriorates, especially in the 
region where there is a large jump in the 
solutions shown in Figure 1. The isoSE 
covariance function is thus not an appropriate 
covariance function to use.   
 
The NN covariance function is inhomogeneous 
and is expected to model the jump more 
accurately. However, based on Table 1, the 
resulting errors appear to be comparable to those 
obtained using the isoSE covariance function.  
This is because the inhomogeneity being 
modeled by NN covariance function is 
incompatible with our data; NN covariance 
function is suited for data that have abrupt 
change when p changes from positive to 
negative.  However, 50% of the sample points in 
SS have errors below 10% when the NN 
covariance function is used compared to 20% 
when the isoSE covariance function is used.  

The optimized hyperparameters of the NN 
covariance function are l = 0.072 and !f = 2.47.   
This short characteristic length and large 
variance reflects the attempt of the NN 
covariance function to model the jump. With the 
isoSE covariance function, the hyperparameters 
are l = 4.20e-1 and !f = 1.83. Here, the jump is 
not sufficiently captured since most of f(p) is 
smooth in the parameter space.   
 
It is clear that both covariance functions do not 
provide the accuracy we need. A more 
appropriate covariance function is one where the 
hyperparameters are function of p (Plagemann, 
2008). However, the expected optimization 
problem will be arduous, and the resulting 
covariance function is harder to interpret.  
 
In all of the above approximations, the 
hyperparameter "n is close to zero, because we 
are approximating the solution obtained through 
a deterministic simulation. However, the 
presence of "n implies that we could model noise 
in our solution. This will be explored in the 
future in the context of flow through 
heterogeneous formations. 
 
One should note that these hyperparameters are 
obtained through a local optimization algorithm 
(steepest descent), and are thus sensitive to the 
starting position. This could also explain why 
the previous errors from both the isoSE 
covariance function and NN are not satisfying. 
More optimal hyperparameters may be obtained 
if global optimization algorithm is used, leading 
to better ROMs. The use of global optimization 
algorithm will be explored further in the future. 

Uncertainty quantification 
The purpose of developing such a ROM is to 
substitute a time-consuming high-fidelity model 
by a ROM in an inverse analysis or sampling-
based uncertainty quantification (UQ) analysis, 
where many forward model evaluations are 
needed. We have implemented such capability 
into iTOUGH2, and performed UQ for the same 
sample problem (we have considered the smaller 
range of log(k)). 
 
For comparison purposes, we performed an UQ 
using the high-fidelity model (HFM). The 
Monte Carlo simulation is performed with a 
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sampling size of 100 and 1000 for both the 
ROM and HFM. The mean and variance of the 
model output from each Monte Carlo simulation 
are listed in Table 3. 
 
Table 3. Comparison of UQ results between a HFM 
and its corresponding ROM 
 HFM-

1000 
ROM-
1000 

HFM-
100 

ROM-
100 

Mean 1.11e6 1.15e6 1.14e6 1.17e6 
Standard 
deviation 

2.4e5 2.4e5 2.3e5 2.3e5 

 
The ROM seems to be able to reproduce the 
standard deviation of the UQ analysis. The error 
of the mean estimation using the ROM is about 
3%. For this particular example, 100 samples 
seem to be sufficient for uncertainty 
quantification. 
 
The histogram using 1000 samples are plotted in 
Figures 3 (a) and (b). The ROM appears to re-
produce the histogram of the model output 
relatively well. In this particular problem, it does 
not seem necessary to have a large number of 
samples for an UQ analysis (i.e., 100 samples is 
sufficient). However, most problems, especially 
the nonlinear ones with many sensitive and 
uncertain parameters, may need many forward 
evaluations, in which case ROM would save 
time. The ROM construction in this example 
requires only 30 forward HFM evaluations. 
Since the evaluation of the ROM during the 
Monte Carlo sampling has a negligible 
computational cost compared to running a single 
simulation with the HFM, the cost savings are 
proportional to NMC/30, where NMC is the number 
of Monte Carlo simulations.   

CONCLUSION 

In this work, we examined two types of ROMs 
to approximate a high-fidelity model for inverse 
analysis: A Gaussian Process (GP) regression 
model and neural networks. We provided an 
error-estimation method for the proposed ROM 
methods. We improved the performance of GP-
based ROM by implementing an adaptive 
sampling approach, so the ROM can be 
constructed with a minimum amount of 
expensive HFM simulations. In the sample 
problem, the ROMs using both approaches  

 
(a) 

 
(b) 
Figure 3. Histogram of the Model output from the 

Monte Carlo simulation with 1000 
samples, using both (a) HFM and (b) 
ROM 

 
 
perform significantly better than a linear 
interpolation approach. However, the 
performance is not very satisfying when the 
model output experiences sudden changes. This 
implies that our prior models for the mean and 
covariance are inappropriate.    
 
Constructing the ROM requires some CPU time, 
specifically the estimation of hyperparameters, 
which in itself is an optimization problem. 
However, this computational cost is relatively 
small and just a one-time effort. Once a ROM is 
constructed, the computational savings are 
demonstrated by a UQ analysis. The savings can 
be large for a big problem (i.e., problems with 
many uncertain parameters, large sample size, 
and each HFM evaluation taking a long time).  
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